1.1 - Points, Lines, and Planes

1) Review Algebra Test

2) Notes 1.1: Geometry’s Building Blocks

3) Notes 1.1: First Geometry Postulates

4) Assignment

5) Class Close: What to expect tomorrow

Algebra 1 Post Test

\[
\begin{align*}
8 - 7w &= -27 \\
-8 & \quad -8 \\
-7w &= -35 \\
\frac{-7w}{-7} & = \frac{-35}{-7} \\
w & = 5
\end{align*}
\]

\[
\begin{align*}
3(4x - 12) &= -2(2x - 3) \\
12x - 36 &= -4x + 60 \\
16x & = 96 \\
x & = 6
\end{align*}
\]

\[
\begin{align*}
5 - \frac{3x}{5} & = 15 - 5 \\
-\frac{3x}{3} & = 75 - \frac{75}{3} \\
x & = -25
\end{align*}
\]

\[
\begin{align*}
\frac{-3x}{5} & = 15 - \frac{5}{3} \\
x & = -\frac{75}{3} \\
x & = -25
\end{align*}
\]
Algebra 1 Post Test

\[\frac{x + 3}{6} = \frac{x - 4}{4} \]

\[6(x - 4) = 4(x + 3) \]

\[6x - 24 = 4x + 12 \]

\[; \]

\[x = 18 \]

\[-\frac{8x}{8} = \frac{36}{8} \]

\[x = -4\frac{1}{2} \]

\[4x^2 - 3x + 12 - 12x^2 + 4x - 5 \]

\[-8x^2 + x + 7 \]

\[(x - 3)^2 \]

\[(x - 3)(x - 3) \]

Algebra 1 Post Test
The Undefined Terms

Point
- has no dimension (0-D)
- no length, width, or thickness
- represented by drawing a dot
- named by a capital letter

Line
- has no thickness or width, only has length (1-D)
- represented by drawing double arrows
- named by a lowercase script letter or by a line over two capital letters

Plane
- a plane extends indefinitely in four directions but has no thickness (2-D)
- represented by drawing a four sided figure
- named by upper case script letter or three non collinear points

Other Building Blocks

Line Segment
- a piece of a line determined by two endpoints
- contains the two endpoints and all the points between
- named by two endpoints with a bar over them

Ray
- a piece of a line with one endpoint and extends forever in one direction
- named by the endpoint and a directional point

Order Matters!

Opposite Rays
- two rays with a common endpoint and form a line

Collinear
- "objects" that lie on the same line

Coplanar
- "objects" that lie on the same plane
Your First Geometry Postulates

Determining
Through any two points, there is exactly one line

Through any three non-collinear points, there is exactly one plane

If two points lie in a plane, the line they determine is also in the plane on the same plane

Intersection
If two lines intersect, their intersection is a point

If two planes intersect, their intersection is a line

Assignment (Due Thursday, Sept 4)

1) Pg. 9, #13-28, 30-33, 39-41

2) Check out website and parent letter

3) Think of any questions about the course so far