7.2 - Transforming Quadratics

* Completing the Square Questions
* Some Parabola Reminders
* Transformations on Parabolas
* Tying the two concepts together
* Assignment Time and Reading Time
7.1 Quadratic Functions

Quadratic Function (in general form)
- a function where a, b, and c are real number with $a \neq 0$, in the form

 $$y = ax^2 + bx + c$$

Quadratic Function Graph
- the graph of a quadratic function is a U-shaped curve (parabola)
- the "center line" of the parabola is called the axis (of symmetry)
- where the axis intersects the graph is called the vertex
- if $a > 0$, the parabola opens upward and has a single minimum point
- if $a < 0$, the parabola opens down and has a single maximum point

[these extrema happen at the vertex of a parabola]

7.1 Quadratic Functions

Quadratic Function: Standard Form (or "vertex form")
- standard form is easiest to use when graphing

 $$y = a(x - h)^2 + k$$

- the vertex of the parabola is at (h, k); the axis is the vertical line $x = h$
- to get from general (abc) to Standard (vertex) form,

 you will often need to...

 complete the square

Maximum/Minimum
- for a parabola, the maximum/minimum occurs at the vertex

 the vertex is along the axis (of symmetry)

 the equation for the axis is $x = -b/2a$

so... if a quadratic is in general form, you can find the min/max at

$(-b/2a, ?)$
Example 1: Write $y = 2x^2 + 8x + 7$ in standard form

\[y = 2(x + 2)^2 - 1 \]

Vertical and Horizontal Shifts

if c and d are positive real numbers in the equation
\[y = (x - c)^2 + d \]

the parabola is shifted up d units and to the right c units

be careful with negatives in determining shifts

Reflections

"if flipped over the y-axis, the x is negative;
(really no effect for parabolas, and probably wont see)"

"if flipped over the x-axis, the function is negative"
(this will occur "outside the parenthesis")
7.2b: Nonrigid Transformations

-a nonrigid transformation changes the shape of a parent graph by a vertical stretch or a vertical shrink. The graph’s overall behavior doesn’t change.

Vertical Stretch and Shrink

if \(a \) is a positive real number in the quadratic

\[
y = ax^2
\]

- and \(a > 1 \), then the graph is stretched "by a factor of \(a' \)
- and \(0 < a < 1 \), then the graph shrinks "by a factor of \(a' \)

If \(a \) is negative, consider a reflection and a vertical stretch or shrink

All transformations should be performed on the "parent graph" in the order

OF THE COMPOSITION OF THEIR FUNCTION

in other words, the order in which you would replace

Example 1:

\[
y = 4(x - 3)^2
\]

\[
y = 4(x^2 - 3)
\]

\[
y = 4x^2 - 3
\]

\[
y = 4x^2 - 12
\]

the first is the parent parabola shifted right 3
then stretched by a factor of 4

the second is the parent parabola shifted down 3 units
then stretched by a factor of 4

the third is the parent parabola stretched by a factor of 4 then shifted down 3 units
Example 1: Find the transformations on \(f(x) = x^2 \) in the function \(g(x) = 2x^2 + 8x + 7 \)

\[
g(x) = 2(x + a)^2 - 1
\]
- left 2
- stretch vertically 2
- down 1

Example 2: Find the max/min by finding the axis...
\[f(x) = -x^2 + 6x - 8 \]

vertex \((3, 1)\)

\[f(3) \]

axis: \[x = -\frac{b}{2a} \]

\[x = -\frac{6}{2(-1)} \]

\[x = 3 \]

max = 1
Assignment (Due "TBD")

1) Read all parts of 7.1 and 7.2

2) Chapter 7 Problems Packet
 a) 7.1 (finish all parts now)

 b) 7.3 (without g/c) / 7.6

*) Looking for:
neat, complete, organized, and well labeled

3) Grades...Online Stuff....