10.3 - Standard Exponential Form

*Questions so far...

*Reviewing Characteristics of Exponential Functions

*Clear Definition of an Exponential Function

*Examples of Standard Form

*Assignment Time and Reading Time

Lingering Questions
First Look at Exponential Functions

<table>
<thead>
<tr>
<th>Monomial Function</th>
<th>Exponential Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = x^b)</td>
<td>(y = b^x)</td>
</tr>
<tr>
<td>(f(x) = x^b)</td>
<td>(f(x) = b^x)</td>
</tr>
</tbody>
</table>

Input (x) --> base
Input (x) --> power

Power is constant
Base is constant

Behavior

- Monomial functions are dependent upon the power used
- Exponential functions all have similar behavior

Case: When \(b = 2 \)...

- Referred to as a quadratic function
- Referred to as the "doubling function"

Exponential Type

A function of Exponential Type has the form...

\[
f(x) = A_0 b^x
\]

- Where \(A_0 \) and \(b \) are constants such that \(A_0 \neq 0 \), \(b > 0 \) and \(b \neq 1 \)

\(A_0 \) indicates the "initial value" and \(b \) is still "base"

This form we often refer to as "standard exponential form"
Put each equation into standard exponential form
"initial value, single base, exponent of just 'x'''

\[y = 5^{4x} \quad y = 2(10)^{x^2} \quad y = 7^{-x/3} \]

Assignment (Due "Thursday, January 8")
1) Read Chapter 10 pg. 134-137

2) Chapter 10 Problems Packet
 a) 10.1 / 10.5
 b) 10.2 / 10.3

*) Becoming more critical about neat, complete, and organized
\[y = \frac{5}{0.345^{2x}} \]

\[y = \frac{5}{(0.345)^{2x}(0.345)^{-x}} \]

\[y = \frac{5}{(0.345)^{-x}} \]

\[y = 5(0.345)^{x}(0.345)^{-2x} \]

\[y = 5(0.345)^{x}(0.345^{-2})^x \]

\[y = 5(0.345)^{x}\left(\frac{1}{0.345^x}\right)^x \]