14.2 Rational Functions: Graph Properties

1) Quick Recap of Solving Systems

2) Rational Functions - Early Definition

3) Basic Graphing of Linear-to-Linear

4) Assignment Time

14.1 Assignment Problems

Solve the following systems by using GE to get into REF

\[
\begin{align*}
 a + b + c &= 6 \\
 2a - b + c &= -1 \\
 3a - c &= -7
\end{align*}
\]

\[
\begin{align*}
 2a + 2c &= 6 \\
 5a + 3b &= 11 \\
 3b - 4c &= 1
\end{align*}
\]

\[
\begin{align*}
 2a + b + 3c &= 1 \\
 2a + 6b + 8c &= 3 \\
 6a + 8b + 18c &= 5
\end{align*}
\]
14.2: Rational Functions

Rational Function

\[f(x) = \frac{N(x)}{D(x)} \]

where \(N(x) \) and \(D(x) \) are polynomials with no common factors, and \(D(x) \) has at least a degree of one.

Domain: Remember that any domain values should not make the denominator of the function zero.

\[f(x) = \frac{x^2 - 5}{x^2 - 3x^2 + 1} \]

For now, in this course, we will only look at rational functions that are called "linear-to-linear" which means the degree of both \(N(x) \) and \(D(x) \) are 1.

Simple Rational Function Example

Graph the function \(f(x) = \frac{1}{x} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{1}{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>undefined</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{1}{5})</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1/2</td>
<td>2</td>
</tr>
<tr>
<td>(1/3)</td>
<td>3</td>
</tr>
<tr>
<td>(1/5)</td>
<td>5</td>
</tr>
<tr>
<td>-2</td>
<td>-0.5</td>
</tr>
<tr>
<td>-3</td>
<td>-0.33</td>
</tr>
<tr>
<td>-5</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

Notice

- the graph at each "end" approaches \(y = 0 \), but never gets there
- the graph at \(x = 0 \) does not exist
 - as \(x \) approaches 0 from the left, \(f(x) \) decreases without bound
 - as \(x \) approaches 0 from the right, \(f(x) \) increases without bound
14.2 : Rational Functions

Asymptotes
when the graphs y-values go off to infinities, the x-value where this happens (x = a) is a **vertical asymptote**

when the graphs y-values seem to "flatten", the y-value where this happens (y = b) is a **horizontal asymptote**

Vertial Asymptotes
occur at the zeros of D(x) “where the denominator is zero”

Horizontal Asymptotes
for linear-to-linear

y = coefficient of x in N(x)
coefficient of x in D(x)

Example 1
Graph the function

\[f(x) = \frac{2x + 4}{x - 3} \]

Vert Asym. ⇒ \(x = 3 \) (D(x) = 0)

Horiz Asym. ⇒ \(y = \frac{2}{1} \) (leading coeff)

X-int \(⇒ (0, -1\frac{3}{4}) \) (x = 0)

X-rnt \(⇒ (-2, 0) \) (N(x) = 0)

\[\begin{array}{c|c|c}
 x & y & \frac{2x + 4}{x - 3} \\
 \hline
 -4 & \frac{1}{4} & -5 \frac{1}{4} \\
 -3 & -1 \frac{3}{4} & -5 \frac{3}{4} \\
 2 & -3 \frac{1}{2} & -5 \frac{1}{2} \\
 2 \frac{1}{2} & -2 \frac{1}{2} & -6 \frac{1}{2} \\
 5 & -3 & -7 \frac{3}{4} \\
 5 \frac{1}{3} & 0 \frac{1}{3} & -8 \frac{1}{3} \\
\end{array} \]
Assignment ("Due" Thursday, February 25)

a) Packet 14 work
 14.1 (you do need to graph fairly accurate)

Read pg. 181-185
 (some real heavy fraction stuff!)